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Abstract

A method is developed for locating structural damage using only measured natural frequency changes
induced by damage. The damage localization method exploits multiple sensitivity enhancing controllers,
each of which provides an independent set of modal frequency information that is used to identify damage
variables based on a least-squares technique. The method provides significant improvement in damage
localization and ability to tolerate measurement noise on natural frequency shifts due to damage over
similar localization methods that use only open-loop modal data. A first order sensitivity matrix relates
natural frequency changes in both the open- and closed-loop systems to damage variables and is evaluated
from an analytic model. Single- and multi-input control laws are designed to enhance the change in natural
frequencies due to damage. Multi-input control laws are designed using a minimum-gain eigenstructure
assignment method in order to maintain a well-conditioned sensitivity matrix and generate independent
modal data, while also minimizing the number of actuators required. This study found that the resolution
of measured natural frequency changes due to damage can be significantly improved by careful selection of
damage-sensitive closed-loop poles targeted by the eigenstructure assignment method. As a result,
measured closed-loop natural frequency changes due to damage exhibit better signal-to-noise ratios than
open-loop frequency changes. The method is demonstrated numerically using a cantilevered beam to show
how multiple sensitivity enhancing controllers can locate damage and assess damage extent in the presence
of measurement noise on natural frequencies.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Increasing performance demands on load-carrying structures, along with high expected
reliability, have necessitated the development of elaborate non-destructive evaluation (NDE)
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methods. Among them, vibration-based damage detection methods have received attention due to
their simplicity and autonomous monitoring capability.
Natural frequency (eigenvalue) and mode shape (eigenvector) changes have been the most

frequently studied vibration-based damage metrics [1]. Inverse or model updating approaches to
damage identification use optimization methods to update mass and stiffness matrices of an
analytic model using measured modal data. Using the structure’s eigenvalue equation for damage
localization requires both eigenvalue and eigenvector measurements to reconstruct stiffness and
mass parameters. This means that perturbation or damage resulting in changes in system
parameters cannot be determined explicitly without knowing the perturbation in both eigenvalues
and eigenvectors simultaneously. However, mode shape measurement requires multiple sensors to
approximate the infinite number of degrees of freedom (d.o.f.) in real distributed parameter
structures. When mode shape measurements are incomplete, mode expansion or model reduction
inevitably deteriorates the solution of the eigenvalue equation through inverse approaches [2,3].
Moreover, measurement error and noise are critical threats to the credibility of measured mode
shape information [4]. On the other hand, modal frequencies (eigenvalues) give more reliable
evidence of damage in a structure, compared to the mode shape (eigenvector), in that frequencies
are easier to measure and are less sensitive to measurement errors [5]. Hence, damage detection
methods that require only measured modal frequencies are generally preferred to those that
require both frequencies and mode shapes. Nonetheless, when using modal frequencies for
damage localization, the relationship between a finite set of measured modal frequencies and
damage location is not guaranteed to be unique.
The model updating method can be cast into a form in which only frequencies are required for

damage localization, when damage variables can be posed a priori. Sensitivity-based model
updating methods use the first order approximation between system parameter perturbations and
modal frequency changes to determine damage parameters using a least-squares approach. For
example, Messina et al. [6] propose a sensitivity-based method which is combined with statistical
correlation to find multiple damage locations in truss and three-beam test structures. After
inserting the first order sensitivity matrix into a correlation equation, the damage scaling
coefficients are sought, which avoids taking a pseudo-inverse of the sensitivity matrix. A
numerical simulation study is presented in Ref. [6] to validate the method. In the study, more than
10 measured modal frequencies are required for detecting multiple damage locations. The
effectiveness of a second order approximation is also investigated. Usually, the sensitivity matrix
is obtained using an analytic model by finding derivatives of the eigenvalues with respect to
stiffness perturbations for each potential damage location. The updating process typically iterates
the solution until the damage variables satisfactorily converge to the true system perturbations.
One problem with this method, which is again, related to mathematical uniqueness of damage
localization using modal frequencies, is that the number of unknowns (system parameters to be
updated) is usually much larger than the number of measurable modal frequencies. In other
words, the number of identifiable damage locations is limited to the number of measurable modes.
It is quite difficult to accurately measure more than a few modal frequencies above the lowest one.
As a result, recent research has focused on methods of increasing the modal frequency data
available for sensitivity-based model updating in order to enhance uniqueness characteristics.
Researchers have proposed a variety of methods for enriching the modal data set in order to

enhance model updating. Cha and Gu [7] studied a mass addition technique for structural
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parameter updating. They show that adding known masses to a multi-spring–mass system and
measuring its new eigendata can correct the mass matrix of the perturbed model. Subsequently,
the stiffness matrix can also be updated by equating the eigenvalue equation to a new, mass-added
system. However, this method needs both natural frequency and mode shape measurements.
Nalitolela et al. [8] introduce the possibility of using a mass or stiffness added model to extract
additional natural frequencies. After perturbing mass or stiffness at specific co-ordinates of the
beam, a sensitivity analysis is performed. In order to measure significant natural frequency
changes, substantial perturbation of the structure is essential. Physically adding mass or stiffness
to structures makes the method difficult to implement in practice. Lew and Juang [9] incorporate
the concept of a virtual passive controller to overcome this limitation. They used output and
dynamic feedback controllers to generate additional closed-loop modal frequencies in order to
identify multiple damage locations in a cantilevered beam. Here, no physical mass or stiffness
attachments to the structures are required. In the study, a damage variable vector is defined as a
percentage of stiffness loss for each potential damage location. Although the stability of the
closed-loop system is guaranteed by the nature of the energy dissipative passive controller, neither
the sensitivity of frequency shifts for each passive controller nor the effect of measurement noise is
considered. In general, frequency shifts due to small damage in structures are insignificant [5,10].
Hence, without sensitivity enhancement, it is difficult to measure modal frequency changes
accurately in the presence of measurement noise. Recently, Palacz and Krawczuk [11] investigate
the effects of measurement error on damage detection using vibration parameters. The study
shows that very small errors in measured natural frequencies can ruin the localization of damage
in a cantilevered beam. Thus, to guarantee that additional modal data provides linearly
independent equations for sensitivity-based damage localization, control laws must be properly
designed.
Ray and Tian [12] propose a new approach to improve sensitivity of closed-loop natural

frequency toward stiffness and mass damage. They employ a damage-sensitive pole placement
technique. In that study, feedback control laws for sensitivity enhancement are investigated
through numerical simulation in order to detect damage in a cantilevered beam. A control law
targeting stiffness damage detection is designed by reducing frequencies of the first three modes
using a single point force actuator. Sensitivity to the thickness reduction at the root of the beam
increases by a factor of approximately 40 (first mode) to a factor of five (third mode). Ray et al.
[13] extends these results to consider sensitivity enhancement of fatigue crack damage and
experimental validation of the SEC concept for a cantilevered beam under bending.
Both Refs. [12,13] use sensitivity enhancing control law designs for single-input systems to

increase the linear sensitivity of natural frequency variations to damage. For a completely
controllable system, the control gains are uniquely determined in the single-input case given a set
of closed-loop pole locations. Key to the development of the SEC concept for single-input systems
is a methodology for control law design in order to maximize sensitivity enhancement. Ray and
Marini [14] develop an optimization method for single-input systems in which optimal closed-loop
pole locations are determined for SEC of mass or stiffness damage, given constraints on control
effort and fixed actuator location.
In the multi-input case, an infinite number of gain sets can satisfy closed-loop pole placement.

Hence, additional control law design objectives can be achieved in the multi-input case. Juang
et al. [15] propose an eigenstructure assignment technique seeking a minimum norm gain solution
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for an output feedback multi-input system. In that study, a null-space technique along with
singular value decomposition is adopted to expand admissible eigenvector space. They suggest the
open-loop eigenvector as a good candidate for a desired closed-loop eigenvector set, which
eventually leads to minimum control gains and thus minimum control effort.
Both Refs. [12,13] focus on damage detection without regard to location or damage extent. The

key contribution of this paper is developing and demonstrating the use of the SEC concept
introduced in Refs. [12,13] for creating damage sensitive feedback controllers in order to provide
sufficient and independent equations to solve for unknown damage parameters or damage
locations. The sensitivity-based damage localization method of Ref. [6] is combined with the
concept of damage-sensitive control laws of Refs. [12,13] to produce a damage localization
method that relies on fewer measured modal frequencies than a comparable open-loop system
only and is robust to measurement noise. The eigenstructure assignment method of Ref. [15] is
used to construct multi-input systems for SEC. Concepts from Ray and Marini [14] are used to
identify closed-loop pole locations that maximize sensitivity for fixed actuator locations. Multiple
actuators along a structure can contribute additional sets of measured closed-loop modal
frequencies in order to maintain a sensitivity matrix relating damage variables and measured
frequencies that is well-conditioned, and thus, whose pseudo-inverse is defined. All possible
actuator locations are investigated to increase the orthogonality of the equations. An
eigenstructure assignment technique is presented to determine the minimum norm gains for
multi-input closed-loop systems. In essence, damage-sensitive control laws improve the resolution
of measured natural frequency changes.
A simulation example is presented that demonstrates the effect of additional closed-loop modal

information through single-input and multi-input controllers on the numerical conditioning of
sensitivity-based damage localization. Through this example, it is demonstrated that the condition
number alone is not an accurate estimate of damage localization ability. Scalar metrics that can be
used to compare suitability of various actuator-location and control law combinations for
enhancing damage localization are presented.

2. Background theory

2.1. Sensitivity enhancing control

A damage-sensitive feedback controller drives the poles of the closed-loop system to the
locations in the complex plane where modal frequency shifts are more sensitive to damage [12,13].
The concept of sensitivity enhancement can be easily demonstrated by numerical simulation of a
controllable structural model. For example, the FE cantilevered beam model considered here
consists of 8 elements and 9 nodes with a point force actuator at node 2 as shown in Fig. 1. Single-
input pole placement (SIPP) is employed to move the first four modes to frequencies slightly lower
than open-loop frequencies in the complex plane. Damage-sensitive feedback control increases the
frequency shifts under 10% reduction of Young’s modulus in the first element (closest to the root)
of the beam. The percentage of frequency shifts in the first four modes of the closed-loop system
are shown in Fig. 2 as function of closed-loop frequency. As the closed-loop frequency of each
mode decreases, the frequency shifts increase, illustrating sensitivity enhancement.
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2.2. Sensitivity-based damage localization

Damage localization using eigenvalue sensitivity analysis requires two consecutive processes:
(1) computing the eigenvalue sensitivity matrix from an analytic model, and (2) estimating the
unknown parameters or damage variables using natural frequencies measured from a real
structure. The sensitivity matrix is typically computed from a finite element (FE) model of the
structure. With this sensitivity matrix and measured natural frequencies, damage variables, i.e.,
possible locations of damage occurrence and their extent, should be identified. Here, the damage
variable is defined as the fraction of thickness reduction for each finite element. For example, a
damage vector fvdg ¼ f1; 1; 0:95; 1; 1; 1; 1; 1g means that the third element has a 5% thickness
reduction while the other seven elements are undamaged. The damage vector fvhg; whose elements
are all equal to unity, represents the nominal or healthy system.

ARTICLE IN PRESS

24 26 28 30 32 34
2

4

6

8

10

12

14
Mode 1

Closed-loop frequency (rad/s)

F
re

qu
en

cy
 s

hi
ft 

(%
)

190 195 200 205 210
1

1.5

2

2.5

3

3.5
Mode 2

Closed-loop frequency (rad/s)

F
re

qu
en

cy
 s

hi
ft 

(%
)

500 520 540 560 580
0.8

1

1.2

1.4

1.6

1.8

2

2.2
Mode 3

Closed-loop frequency (rad/s)

F
re

qu
en

cy
 s

hi
ft 

(%
)

950 1000 1050 1100 1150
0.6

0.7

0.8

0.9

Mode 4

Closed-loop frequency (rad/s)

F
re

qu
en

cy
 s

hi
ft 

(%
)

(a) (b)

(c) (d)

Fig. 2. Sensitivity enhancement in an 8-element cantilever beam: the percentage of natural frequency changes of the

first four modes vs. closed-loop pole selections; (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4; �; denotes open-loop
frequency.
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Fig. 1. Eight-element controlled cantilever beam finite element model and nodal points: 200 mm ðW Þ � 9:5 mm ðHÞ �
650 mm ðLÞ:
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The analytic model of a distributed parameter structure such as a cantilevered beam can be
conveniently expressed by a second order equation as

M .x þ C ’x þ Kx ¼ Bf u; ð1Þ

where M;C;K and Bf are mass, damping, stiffness and influence matrices, respectively. For an
equivalent control model, a state-space equation is defined as

’X ¼ AXþ Bu; ð2Þ

where

A ¼
0 I

�M�1K �M�1C

" #
; B ¼

0

M�1Bf

" #
; ð3Þ

X ¼ ½x ’x
T: ð4Þ

Denoting Ad as a damaged system matrix (by the perturbation of damage variables), the
solution of the characteristic equation yields the ith natural frequency of damaged system:

det½Ad � ðod Þ
2
i I
 ¼ 0: ð5Þ

Perturbations of the damage variable fdvg and the system’s natural frequency changes fdog are
defined as

fdvg ¼ fvhg � fvdg; fdog ¼ fohg � fodg; ð6; 7Þ

where oh and od represent the natural frequencies of the healthy and damaged structures,
respectively.
The non-linear relation between fdog and fdvg can be linearized by the first order multi-

variable approximation:

fdog ¼ Sfdvg; ð8Þ

where

S ¼

@o1

@v1

@o1

@v2
?

@o1

@vr

@o2

@v1

@o2

@v2
?

@o2

@vr

^ ^ & ^
@op

@v1

@op

@v2
?

@op

@vr

2
66666666664

3
77777777775
: ð9Þ

The sensitivity matrix, S; is defined as derivatives of natural frequencies oi up to p modes with
respect to r damage variables vj: Hence, the size of the S matrix is p � r:
Once the sensitivity matrix is formed, the actual damage variables can be estimated from the

measured natural frequency shifts fdogm and the pseudo-inverse of sensitivity matrix:

fvdg ¼ fvhg � Sþfdogm: ð10Þ
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In this study, the damage variables are found directly from Eq. (10) with no iteration, thus
diagnosis of greater degrees of damage may be more difficult due to the non-linear relationship
between natural frequencies and damage level. Iterative updating using more than one set of
measured modal frequencies could improve the converged solution of Eq. (10) as in Ref. [9],
though its success also depends heavily on the accuracy of the analytic model.
The accuracy of the estimated damage variables fvdg depends on the condition number of

sensitivity matrix, S: When the number of measurable natural frequencies is less than the number
of unknown damage variables ðporÞ; additional sets of closed-loop natural frequencies can be
included to identify the damage variables. However, added closed-loop natural frequency vectors
should be mutually independent. In other words, the condition number, or the ratio of the largest
to smallest singular value of the sensitivity matrix should be as small as possible. Otherwise, the
sensitivity matrix can become ill-conditioned and computing the pseudo-inverse, Sþ might not
be possible. Hence, the condition number of the sensitivity matrix is a critical measure of the
adequacy of additional closed-loop information.
Given a controllable system model ðA;BÞ; the ith natural frequency of the closed-loop system

formed by applying control law u ¼ �GX to the actual system is obtained by the solutions to

det½ðA� BGÞ � ðocÞ2i I
 ¼ 0: ð11Þ

As mentioned in Refs. [12,13], by choosing the gain matrix G properly, closed-loop poles can be
arbitrary placed in the complex plane. Conversely, assigning the desired closed-loop pole locations
provides a state feedback control gain. Thus, state feedback closed-loop systems will not only
provide additional information for Eq. (8), but can also enhance the sensitivity of the natural
frequency change by systematic selection of closed-loop poles. As a result, a new sensitivity matrix
having p modes of closed-loop natural frequencies from q closed-loop systems is calculated as

Sc ¼
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: ð12Þ

Here, ocq
p means pth natural frequency of the qth closed-loop system. As in Eq. (10), damage

variables can be identified using the closed-loop sensitivity matrix, Sc; which is computed from
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the analytic model, and measured closed-loop natural frequency shifts, fdocgm:

fvdg ¼ fvhg � Scþfdocgm: ð13Þ

Note that the number of rows in Sc ðpq � rÞ increases by a factor of q; compared to the open-
loop sensitivity matrix S ðp � rÞ: Although, theoretically, the number of damage variables fvg can
be increased up to the number of rows ðpqÞ of Sc; the unique solution of Eq. (13) is not guaranteed
unless the sensitivity matrix is well conditioned. Hence, the sets of closed-loop systems should be
chosen such that the condition number of sensitivity matrix is as small as possible, subject to
constraints in the number of actuators and the maximum control effort. In this study, each closed-
loop system has a different actuator location, which improves the independence of the rows of Sc

and thus minimizes the condition number.

2.3. Multi-input controller design

Previous studies [12–14] on damage-sensitive feedback control investigate only single-input
closed-loop systems. In particular, Ref. [14] considers optimal closed-loop pole locations for SEC
using single-input system. In this section, the multi-input case is investigated from the viewpoint
of damage-sensitive controller design for damage localization.
First, a general approach to the determination of feedback gain matrices from Ref. [16] is

summarized. The eigenvalue equation for a closed-loop system can be written as

ðAþ BGÞWk ¼ Wklk; ð14Þ

where Wk represents an kth eigenvector corresponding to the assigned or desired closed-loop
eigenvalue lk: Alternatively, Eq. (14) can be partitioned in a homogeneous form as

½A� lkI j B

Wk

GWk

" #
¼ 0: ð15Þ

Eq. (15) should have a non-trivial solution to satisfy the sufficient condition for the existence of
assigned eigenvalues and their corresponding eigenvectors.
Defining

Ck ¼ ½A� lkI j B
: ð16Þ

Singular-value decomposition (SVD) can be used to find a set of orthogonal basis vectors
spanning the null space of Eq. (16):

Ck ¼ UkRkV
�
k ¼ Uk

sk 0

0 0

" #
V�sk

V�0k

" #
: ð17Þ

Thus, Eq. (17) gives

CkV0k ¼ 0; Ckfk ¼ 0; ð18Þ

where

fk ¼
Wk

*Wk

" #
: ð19Þ
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From Eqs. (15) and (19), the gain matrix G is embedded in *Wk: Thus G can be obtained by taking
the inverse of matrix Wk; the assigned eigenvectors, which are selected by the designer in advance:

G ¼ *WkW
þ
k : ð20Þ

Since an infinite number of eigenvector and eigenvalue combination can be assigned in Eq. (14),
usually additional constraints are imposed, such as minimizing the norm of the gain matrix or
improving robustness toward system uncertainties. In this study, a gain-minimization technique
from the study of Juang et al. [15] is applied to design the multi-input controller. Eventually, these
multi-input closed-loop systems are considered to be additional candidates for building the
sensitivity matrix of Eq. (12).

3. Simulations and results

For numerical simulations, an aluminum cantilevered beam is modelled using 64 uniform finite
elements. The dimensions of the beam are 200 mm ðW Þ � 9:5 mm ðHÞ � 650 mm ðLÞ: This
represents the truth model of the structure, which is used to generate damage cases and to which
state-feedback control laws are applied. The state-feedback control laws for generating closed-
loop systems are developed from an 8-element cantilevered beam model (Fig. 1) that has the same
dimension of the 64-element model. Hence, the location for each node of 8-element model
coincides with a corresponding node of the 64-element model.
The open-loop poles of the first three modes are �0:677115:77i; �26:37725:08i; and

�206:672022:1i; respectively. For sensitivity enhancement, the damped natural frequencies of the
first three modes are lowered from open-loop poles such as (A) as shown in Table 1. For
comparison, another set of closed-loop poles, case (B) is considered whose real parts of
eigenvalues are increased, respectively. The reason for comparing these two cases is to show that
the locations of closed-loop poles in the complex plane explicitly govern the amount of sensitivity
enhancement, as illustrated in Section 2.1, and consequently, also affect damage localization.
Thus, case (A) increases sensitivity to stiffness damage, while case (B) decreases sensitivity.
The actuator for the state-feedback closed-loop system is a vertical force input applied at a

nodal point. Table 1 provides target closed-loop pole locations for five single-input control laws,
with actuator locations at nodes 2, 3, 4, 6, and 7, and for five two-input control laws. Following
Ref. [14], pole locations for single-input control laws are designed such that sensitivity
enhancement is maximized, yet each control law requires comparable control effort. Double
digits for actuator location indicate multi-input cases; for example, actuator location 23 represents
a multi-input closed-loop system having dual actuators at nodes 2 and 3. Dual actuators allow a
significant increase in the total number of independent controllers without increasing the number
of actuators.
Stiffness damage is assumed as the damage case and is simulated as a 3% thickness reduction in

a single element. Damage variables are selected as a set of potential single-element damage
locations in the truth model. Three different damage variable vectors are considered as shown in
Table 2. A damage vector having 11 damage variables can identify 11 potential damaged elements
from total 64 elements, while one with 16 damage variables can identify 16 possible single-element
damage locations.

ARTICLE IN PRESS

B.H. Koh, L.R. Ray / Journal of Sound and Vibration 273 (2004) 317–335 325



Fig. 3(a) presents the percent change in open-loop natural frequencies for the first three
modes due to thickness reduction in a single beam element of the 64-element truth model.
It shows that the maximum open-loop frequency shifts are less than or equal to 0.3%, as

ARTICLE IN PRESS

Table 1

Actuator locations and assigned closed-loop poles for controllers (A) and (B)

Actuator locations Closed-loop poles (A) Closed-loop poles (B)

�0.7760i �1.07115.77i

2 �27.07555i �36.07725.08i

�206.071800i �25572022i

�0.7765i �1.27115.77i

3 �27.07565i �46.07725.08i

�206.071750i �28572022i

�0.7770i �0.97115.77i

4 �27.07575i �40.07725.08i

�206.071700i �27572022i

�0.7780i �1.57115.77i

6 �27.07625i �30.07725.08i

�206.071700i �23572022i

�0.7785i �2.17115.77i

7 �27.07650i �33.07725.08i

�206.071750i �22572022i

23 Same as 2 Same as 2

24 Same as 3 Same as 3

�0.7795i �2.77115.77i

26 �27.07655i �50.07725.08i

�206.071700i �22572022i

27 Same as 6 Same as 6

67 Same as 6 Same as 6

Table 2

Number of damage variables and corresponding element number of damage locations

No. of damage

variables

Element number

11 1 7 13 19 25 31 37 43 49 55 61

13 1 6 11 16 21 26 31 36 41 46 51 56 61

16 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
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damage location moves from the root to the tip of beam. Figs. 3(b) and (c) illustrate the
percent natural frequency shifts for closed-loop systems (A) and (B), having respectively, both
single-input actuators at nodes 2 and 6. In contrast to the open-loop case, the closed-loop
system with damage-sensitive controller (A) exhibits a huge enhancement in frequency shifts
for the first three controlled modes. Note that damage-insensitive controller (B) does not
show much difference from the open-loop case in frequency changes. It is also clear from Fig. 3(b)
that under sensitivity enhancing control, the actuator location (nodes 2 and 6) can signi-
ficantly change the pattern of frequency shifts due to damage along the beam. This contrast
improves the independence of each closed-loop system’s contribution to the sensitivity matrix
of Eq. (12).
Table 3 presents damage localization results for several combinations of closed-loop systems

which have p modes, q actuators, and r damage variables along with the resulting sensitivity
matrix condition numbers. Given a fixed number of actuators and damage locations, condition
number is a good measure of damage localization ability. However, condition number is generally
not a good localization metric when comparing systems with a different number of actuators, or
damage cases. In order to develop a scalar metric that adequately captures the effect of number of
controllers and number of damage cases on localization, a quantitative measure of the localization
performance is provided by two statistical indices, a and b: These indices indicate accuracy of
localization and severity of damage, respectively.
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Fig. 3. Percentage frequency changes for damage consisting of a 3% thickness reduction in a single beam element of the

64-element model; (a) open-loop system, (b) closed-loop system (A), (c) closed-loop system (B). Single-input actuators

at node 2 (–) and 6 (- - -) for closed-loop systems.
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a ¼ %s; sk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXr
i¼1
iak

ðvi � %vÞ2

r � 2

s
; ð21Þ

b ¼ %g; gk ¼
vk � vt

vt

: ð22Þ

a represents the mean of standard deviations ðskÞ of total r � 1 damage variables which are
identified as healthy ones, i.e., iak (where k is the correct location of damage). b indicates the
mean of ratios ðgkÞ between the true value of a damage variable ðvt ¼ 0:97Þ and the identified value
of the kth damage variable ðvkÞ:Hence, the smaller a and b; the better damage localization and the
more accurate assessment of its severity.
There are three important observations to be made regarding Table 3. First, the values of a and

b decrease as the condition numbers decrease. Showing that, the performance of damage
localization depends on the condition number of the sensitivity matrix, Sc: However, a and b
provide more objective measures for localization performance than condition numbers since
comparing the absolute values of condition numbers for each closed-loop system is less
meaningful, due to variation in the number of and placement of actuators. In other words, one
cannot compare condition numbers of systems which have dissimilar combinations of closed-loop
systems. For example, in Table 3, closed-loop system (A) with fp ¼ 3; q ¼ 10; r ¼ 11g shows a
condition number that is bigger than the case of fp ¼ 3; q ¼ 5; r ¼ 11g; yet the q ¼ 10 case still
exhibits better damage localization result in terms of performance indices a and b: Likewise, the
results from the case of fp ¼ 4; q ¼ 10; r ¼ 11g and fp ¼ 4; q ¼ 5; r ¼ 11g show the same pattern.
Secondly, as the value of the number of damage variables r approaches pq; the condition number
of the sensitivity matrix increases and damage localization becomes less successful. This supports
the fact that simply satisfying the inequality, pq > r; does not guarantee successful localization [8].
Finally, in regard to sensitivity enhancement, controller (A) apparently gives better damage
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Table 3

Number of measured modal frequencies ðpÞ; actuators ðqÞ; damage variables ðrÞ; condition numbers (CN) for closed-

loop systems (A, B), and the result of damage localization ða=bÞ with no measurement noise

p q r CN (A) a=b ðAÞ CN (B) a=b ðBÞ

3 5 11 268 0.0047/0.0019 2118 0.0074/0.0130

3 5 13 1763 0.0258/0.0097 2912 0.0119/0.0175

3 5 16 4092ð9Þ 0.0757/0.0342 4693 6.1395/3.6884

4 5 11 167ð4Þ 0.0012/0.0019 2859ð5Þ 0.0071/0.0120

4 5 13 901 0.0098/0.0048 4354 0.0103/0.0145

4 5 16 2613 0.0249/0.0219 7748 0.0106/0.0156

3 10 11 275 0.0038/0.0019 1055 0.0066/0.0155

3 10 13 769 0.0061/0.0047 1674 0.0075/0.0175

3 10 16 1478ð10Þ 0.0150/0.0133 2118 0.0090/0.0197

4 10 11 188 0.0011/0.0018 1838 0.0061/0.0132

4 10 13 684 0.0055/0.0029 3064 0.0072/0.0154

4 10 16 1434 0.0072/0.0052 3645 0.0082/0.0175

ð�Þ indicates a figure number of damage localization result. Five actuators at nodes (2, 3, 4, 6, 7), 10 actuators at nodes

(2, 3, 4, 6, 7, 23, 24, 26, 27, 67).
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localization results than controller (B), and the difference in the damage severity index, b; between
two controllers is substantial. Hence, sensitivity enhancement improves the performance of
damage localization.

3.1. Measurement noise

Figs. 4–7 illustrate the result of damage localization using the closed-loop sensitivity matrix, Sc:
Each plot in the figure represents localization results for 11 damage variables along the beam. The
vertical line of each plot denotes the true location of the damaged element. Abscissa and ordinate
indicate the serial number of damage variables (Table 2) and their identified values, respectively.
First, the effect of measurement noise is examined. With the same noise level, damage

localization using the sensitivity enhanced closed-loop systems (A) is compared to the case of
closed-loop systems without sensitivity enhancement (B). Figs. 4 and 5 indicate localization results
using controllers (A) and (B), respectively, and noise-free frequency measurements. Both results
are from a sensitivity matrix, Sc; developed for four modes ðpÞ; five closed-loop systems ðqÞ; and 11
damage variables ðrÞ (i.e., row 4 of Table 3). The location of the bar whose damage severity is 0.97
indicates the identified location of damage and its extent (3% thickness reduction). Both
controllers successfully identified damage from the root to the free end of the beam. However,
damage identification based on a noise-free frequency measurement of closed-loop system (A) is
consistently accurate in both localization and determining extent of damage, while damage
identification based on closed-loop system (B) is occasionally ambiguous in damage localization
or inaccurate in the determination of damage extent. Figs. 6 and 7 show the localization results for
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controllers (A) and (B) with noise-contaminated natural frequency measurements. Here, the
measurement noise is assumed as �0:03%; 0:045%;�0:075%; and 0.06% error from the first four
measured natural frequencies, respectively. In this study, the fixed error ratios for each mode are
imposed on measurements so that localization results for each controller can be objectively
compared. With measurement noise, damage-sensitive controller (A) still maintains unambiguous
localization with modest degradation in determining damage magnitude, while the controller (B),
which has no sensitivity enhancement, mostly fails to locate a damaged element for all but four
damage locations. Hence, closed-loop systems should have sufficient independence and enhanced
sensitivity for damage localization under measurement uncertainties.
In Fig. 8, a comparison is made between the performance in damage localization and the

robustness toward measurement noise. The localization performance index, a; is plotted in terms
of maximum control effort of the closed-loop system. Maximum control effort is obtained from
the impulse response of each closed-loop system. In total, six different closed-loop pole locations
are considered: the first one is the closest to the original open-loop pole locations and the last one
is the furthest. The horizontal axis is defined as an average of the maximum control effort values
from five different closed-loop systems (actuator locations at nodes: 2, 3, 4, 6, and 7) for each
closed-loop pole location. Again, a smaller a denotes better ability to localize damage. In general,
the magnitude of the maximum control effort depends on how far the closed-loop poles are
moved from the original open-loop poles. Noticeable sensitivity enhancement can be achieved if
closed-loop poles are assigned further from open-loop poles. Hence, the noise-robustness
improves as the effect of sensitivity enhancement surpasses the effect of measurement noise, as
shown in the upper line of the figure. As control effort increases, the index, a; decreases, which
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means localizing a damaged element becomes more successful. However, the sensitivity
enhancement also intensifies the non-linear relation between the damage location and the
corresponding modal frequency shift. Thus, the first order approximation becomes less accurate
as the maximum control effort increases (lower line). The comparison shows that there is a trade-
off between the performance of localization and robustness toward measurement noise. However,
from observing the gradients of two lines, sensitivity enhancement is dominant in diminishing the
effect of measurement uncertainties.

3.2. Multi-input controller

In this section, multi-input closed-loop controllers are developed to complement the single-
input closed-loop systems so that the required number of actuators can be minimized. As is well
known, the number of identifiable damage variables is limited by the number of measurable
modal frequencies and the number of closed-loop systems. For example, a sensitivity matrix
having five single-input actuators along with the first three modal frequency measurements cannot
identify 16 damage variables ð5� 3o16Þ as shown in Fig. 9.
In order to overcome this problem without increasing the number of actuators, multi-input

controllers are developed by coupling single-input actuators, in order to generate additional
independent sets of closed-loop systems. In other words, with five single-input actuators, up to 15
different one or two input control laws (five single input and 10 two input) can be developed.
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Hence, the number of identifiable damage variables can be increased or the minimum required
number of actuators can be reduced by incorporating multi-input closed-loop systems. Fig. 10
illustrates the result of damage localization with 10 mixed closed-loop systems, having both single-
input and multi-input controllers identified in Table 2. It is apparent from Fig. 10 that the concept
of including multi-input controllers can increase the number of identifiable damage variables. The
inconsistent result in the first identified damage variable is due to the relatively large frequency
shifts for damage at the root of the cantilevered beam. In other words, the first order linear
approximation suffers from nonlinearity, as mentioned in Section 3.1. As may be seen from
Table 3, the localization performance indices, a and b; decrease noticeably as compared with
single-input case with the same number of damage variables, when closed-loop systems with
multi-input actuators are included in the sensitivity matrix.
Note that not all of the 15 possible combinations of multi-input closed-loop systems are linearly

independent. Here, the pairs of actuators are carefully selected to enhance the independence of
closed-loop systems and the condition number of the sensitivity matrix. An open and difficult
problem is to find the optimal set of actuator locations and corresponding control gains given the
number of damage cases. Ray and Marini [14] investigate the control law optimization problem
for a single-input system. In this paper, we show that given an actuator location, scalar metrics a
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and b provide measures of damage localization ability, given a set of single- or multi-input
actuator locations. Thus, using the optimization method from Ref. [14], along with
combinatorics, one can obtain a substantial improvement in numerical conditioning of the
damage localization problem.

4. Conclusions

An improved structural damage localization method is presented whose effectiveness is verified
by using only measured closed-loop natural frequency changes before and after the damage
occurs. Damage-sensitive, or sensitivity enhancing state-feedback controllers are developed to
generate multiple independent closed-loop systems. These additional closed-loop modal
frequencies provide the eigenvalue sensitivity matrix to approximate damage variables in a
least-squares sense. The proposed method is proven to be highly tolerant to measurement noise.
Also, the concept of minimum-gain eigenstructure assignment is applied to design multi-input
controllers, which improves the condition of the sensitivity matrix with a minimum number of
actuators.
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